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Dynamic scaling for longitudinal critical dynamics of dilute 
Heisenberg and quantum XY chains 

A C Maggst, L L GonSalvesS and R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 15 October 1985 

Abstract. By averaging over chain segments, the response function and density of states 
is obtained for the longitudinal dynamics of two dilute one-dimensional models: the 
Heisenberg ferromagnet in the spin wave approximation and the quantum XY model in 
a transverse field. Dynamic scaling descriptions are derived, and the associated exponents 
and universal scaling functions obtained, for scaling limits where the percolation correlation 
length diverges and the wavevector tends to 0 or T. 

1. Introduction: dynamic scaling 

In lattice-based systems, such as localised magnets, dilution drives the system to a 
‘geometrical’ critical point, the percolation threshold [ 1,2]. At this point the divergence 
of the percolation correlation length 6 causes a crossover from normal to anomalous 
(critical) dynamics, and the description of this and associated effects has been the 
subject of much recent work [3-6J. 

In this paper we study the longitudinal dynamics of one-dimensional spin models 
of classical and quantum type near this dilution-induced critical point. We provide 
exact descriptions of the scaling regimes which confirm dynamic scaling hypotheses 
and yield explicit closed forms for scaling functions for dynamic response and density 
of states. 

The discussion relies on the fact that in one dimension dilution breaks a chain into 
finite segments. By finding the Green functions on a segment of arbitrary length and 
averaging over configurations it is possible to obtain average correlation functions for 
diluted chains. This method was first used for the diffusion problem [7], and has since 
been used to calculate (in the linearised spin-wave approximation) the configurationally 
averaged transverse correlation function ( S:SJ of the dilute classical Heisenberg 
ferromagnet in closed form in the scaling limit [8,9]. It was verified that the result 
exhibits dynamic scaling, and the scaling function was given. A related approach treats 
the system away from the scaling limit by solving analytically for the transverse response 
of individual chain segments and then summing numerically over chain lengths [ 101. 
Methods similar to those of Stinchcombe and Harris [8] and Harris [9] have also been 
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used to treat the transverse correlations of the dilute Heisenberg chain antiferromagnet 
[ I l l ,  and the results of this work agree, within the accuracy of the experiments, with 
neutron scattering measurements of the dynamic structure factor of diluted samples 
of the chain antiferromagnet TMCC [ 12-14]. Such experiments usually measure a 
mixture of transverse and longitudinal dynamic correlation functions, and so far no 
adequate theoretical treatment has been given of the longitudinal critical dynamics of 
dilute magnetic chains. 

The present paper attempts to fill this gap by providing exact results, in the scaling 
limit, for the configurationally averaged longitudinal dynamic response function and 
longitudinal density of states for the following important types of dilute one- 
dimensional magnet: 

( a )  the Heisenberg ferromagnet in a linearised spin-wave approximation; 
( b )  the quantum X Y  chain in a transverse field h. 
These are among the most fundamental types of classical and quantum spin system, 

respectively. 
In dilute chains the criticality associated with the diverging percolation correlation 

length (t+ CO) occurs near the pure limit [l ,  21 and normally shows up in the dynamics 
at low frequency ( w  - 0) and small wavevector ( k  - 0). The simplest form of dynamic 
scaling hypothesis [15] supposes that in this scaling regime ( & - I ,  w, k all small) the 
response occurs at a ‘characteristic frequency’ wc given by 

wc = k ’ f ( k 4 )  ( 1 )  

where z is the dynamic exponent and f is a universal scaling function. The more 
complete statement of the dynamic scaling hypothesis [ 151, containing a generalisation 
of ( l ) ,  is that the response R ( w ,  k, 5) (the imaginary part of an appropriate Green 
function) has the scaling form 

R ( w ,  k, 5) = k - ( z + 2 - ” )  F (  kt ,  wk-’ )  w, k, t-’ + 0 (2) 

where r] is a (static) critical exponent and the two-variable scaling function F is again 
universal. 

The dynamic scaling statement (2) will be explicitly verified for the longitudinal 
response of models ( a )  and ( b ) .  The scaling functions F are given as infinite sums, 
which are evaluated numerically for various values of their arguments (the scaling 
parameters) to provide plots of these universal functions. As in the above introductory 
discussion both models studied have a scaling regime where I-’, k, are small; however, 
for this to occur in model ( b )  the field must satisfy h = J (where J is the exchange 
constant). A dynamic scaling result also holds in both models in a second scaling 
limit where [ - I ,  7 - k, w - 45 are all small with, in model ( b ) ,  h equal to zero. 

Such results for the response also imply dynamic scaling statements and universal 
scaling functions for the (longitudinal) densities of states, and these are also obtained 
in this paper. 

The outline of the paper is as follows. In 0 2 we describe the basis of the method 
(averaging over chain segments) and give required properties of individual chain 
segments. The configurational averaging is camed out in 0 3 to yield analytic 
expressions for the longitudinal dynamic response for each system in each of the two 
scaling regimes. In 0 4 we give corresponding results for the densities of states. Plots 
of numerical evaluations of the analytic expressions are given in 0 5 ,  which concludes 
with an interpretation and discussion of these results. 
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2. Basis of method: longitudinal dynamic response of chain segment 

In one dimension the percolation threshold is at p c =  1 since any dilution breaks the 
system into independent segments. An expansion about the critical point is thus 
equivalent to expansion about the pure system. The full dynamic scaling behaviour 
is however non-trivial and is not accurately described by any effective medium theory 
or simple perturbative expansion. Instead one can exploit the separation of the chain, 
by dilution, into independent finite segments upon which it is possible to solve the 
dynamics of many systems exactly. The response of the ensemble of segments found 
in any realisation of the dilute system is then found as the configurational average of 
the response of the individual segments. In the limit of large percolation correlation 
length it is permissible to replace the sums which arise in these configurational averages 
by integrals from which the dynamic scaling can be exhibited and relevant exponents 
extracted. If the sums or integrals arising in the configurational average are not too 
difficult one then has the dynamic scaling function in closed form. Otherwise the 
scaling function can still be calculated numerically. 

This is the method used here to calculate the critical dynamic response of the 
longitudinal degrees of freedom of dilute one-dimensional magnets in the scaling limit. 
The method clearly requires a knowledge of the dynamic response of finite chain 
segments for the models considered, and the rest of this section is devoted to providing 
this ingredient. 

The two models considered here are the dilute Heisenberg ferromagnet in the linear 
spin-wave approximation and the dilute spin-; XY chain. The longitudinal response, 
which will be calculated for both models in the limits k + 0 and k + T, is found from 
the imaginary part of the longitudinal Green function 

G J t )  =((Sf(t); SRO)))  (3) 
where r, r' are space coordinates. As remarked above, the procedure is to calculate 
the Green functions of a chain segment of arbitrary length and then to perform an 
average over all positions and lengths. The calculation for a particular chain segment 
is easy for the linearised Heisenberg ferromagnet, and is also possible for the XY 
chain, the longitudinal response of which can be found exactly in a long segment 
where end effects are small [16]. 

For the Heisenberg ferromagnet in the spin-wave approximation the operator S z  
is found by expanding in terms of the transverse components using the fixed length 
of the spin vector. The Green function (1) can thus be approximated by a Green 
function involving four transverse operators [ 171: 

G r r 4  t 1 = ( 1 / 4s I(( s: ( t 1 s ; ( t 1 ; s: ( 0) s i  (0) )) 

= ( (a:(t)a,(  tj;  a:(o)a,.(O))). (4) 
The usual boson operator a+ has been defined as S + / a  and a is its Hermitian 
conjugate. In terms of these operators the Hamiltonian takes the following diagonal 
form in the wavevector representation: 

For convenience the spin magnitude S has been absorbed into J. 
To perform the calculation of the response of an individual chain segment it is 

convenient to express the Green function (4) in terms of the basis which diagonalises 
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the Hamiltonian, by taking matrix elements of the operators in (4) with the set of 
operators labelled by the eigenmodes of each segment: 

Grr,= ( q ~ r ) ( r ~ q ' ) ( k ~ r ' ) ( r ' ~ ~ ' ) G q q ~ k k ~  (6) 
kk '  

The Green function G q q ' k k '  can be calculated using for example the equation of motion 
method. Differentiating with respect to t and then Fourier transforming gives the 
following standard expression [18] for such a free boson pair propagator 

where n i  is the Bose occupation function at energy sq. The inner products of (6) are 
the eigenvectors of the chain segments. For a segment of N bonds these are 

( q  1 r) = [2/( N + 1)]1'2 cos(rS4)q (9) 

where the possible wavevectors, determined by the end conditions evident from the 
equations of motion of the {S+} ,  are 

q = m r / (  N + 1 )  m = 1 , 2  , . . . ,  N. (10) 

On substituting these results into (6), the Green function for a single chain segment 
of the linearised Heisenberg ferromagnet is found in the form of the following double 
summation: 

b b  

( 1 1 )  
cos( r + ; ) q  cos( r + +)q' cos( r ' + t ) q  cos(r'+i)q' 

( . N +  1 ) 2  
n q  - n 4 ,  

w - Eq + Eq'  
G r r 4  0 1 = 4 c 

44 '  

A similar calculation can be performed for the quantum X Y  system described by 
the following spin-f Hamiltonian 

In this case an exact expression can be found [ 161 for the longitudinal response of a 
chain segment by introducing the Jordan-Wigner transformation [ 171 

where c are fermion operators. Provided we neglect the boundary term which will 
appear in the Hamiltonian after the introduction of the transformation, it can be 
diagonalised and the eigenfrequencies are in this case given by 

(14) 

k = p r / (  N + 2) p = l ,  . . . ,  N + 1 .  (15 )  

~k = -h + J COS k 

with wavevectors given by 

It should be remarked that in the thermodynamic limit ( N  large, appropriate when 
the correlation length 6 is large) the neglected boundary term does not introduce any 
contribution to the longitudinal response, although it does for the transverse response. 
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The operators that describe the standing modes are related to the cf through the 
transformation 

Following the same procedure adopted for the linear spin-wave approximation we 
may write immediately for the X Y  system 

f f  sin(r-t)q sin(r-$)q'sin(r'-t)q sin(r'-+)q' n 4 - n 4 ,  
( N + 2 ) 2  w - Eq + Eq'  

G r J w )  = 4 c 
4.9' 

where n: is the Fermi function at the energy &k given by (14) and the wavevectors 
occurring in the summation are specified in (15).  

Equations ( I l ) ,  ( 5 ) ,  (10) and (17), (14), (15) are the input for the configurational 
averages to be performed in § 3. 

3. Configurational average for the longitudinal dynamic response 

In 0 2 we have derived expressions for the longitudinal Green functions of single chain 
segments which apply respectively to a quantum X Y  chain (in a transverse field, h )  
and to the longitudinal correlations of a Heisenberg ferromagnet in a linearised 
spin-wave approximation. We now use these results to calculate the response of an 
ensemble of such segments as might be found in an experimental realisation where a 
pure chain-like system has been diluted with non-magnetic ions. We shall carry the 
calculation to its conclusion, and give plots, for four contrasting cases. 

(i) Linearised approximation as w + 0, k + 0 and ( - I +  0. 
(ii) X Y  system as w + 0, k + 0, [ - I +  0 and h = J. 
(iii) Linearised system as w + 43, k + 7~ and 5-l + 0. 
(iv) X Y  system as w + 4J, k + T, 5-l + 0 and h = 0. 
In each of these cases the final result exhibits dynamic scaling in the appropriate 

variables. The dynamic scaling function is given as an infinite sum which is evaluated 
numerically for various values of the scaling parameters. 

Given the Green function G for a single chain segment of N bonds and ( N  + 1) 
sites the average response of the ensemble of such segments produced by random 
dilution is given by [7,8,9,  111 

Rk =c (1 - p ) ' p N  2 cos km( Nir' Im Gr,r+I,l 
N m = - N  

The trigonometric manipulations required to perform the sums over r and m can be 
performed simultaneously for both the ferromagnet and the X Y  system by expanding 
the products of four sines or cosines in (11) and (17) as 

1 i[cos(q + q ' ) ( 2 r  + m + a ) + cos(q - q')(2r + m + a )] 
?r 

%¶'  

+a[cosqm cos q ' m - ( - 1 ) "  cosqm cos q f ( 2 r + m + a )  

-(-1)" cos q'm cos q ( 2 R + m + a ) ] .  (19) 
The parameter a is an indicator variable and is given by a = 0 for the X Y  chain and 
a = 1 for the linearised system. The sums over q and q' are given by either (10) or (15). 
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The summations over m and r of (18) are now easy. In general the expressions 
obtained after these summations have been performed are intractable to further sim- 
plifications but further progress can be made in the limits given above. In all four 
cases the dominant term is derived from the factor cos qm cos q’m in (19). All other 
terms turn out to be of higher order in 5-l. We find that to leading order the summations 
over m and r in (18) give 

1 sin’i(k + q + q’)(  N +  1) + sin’ f( k +  q - q’)(  N +  1)  sin2f(k - q + q’)( N +  1 )  
sin2;( k +  q - q‘ )  

+ 
9.9 ‘,G ( sin’ $( k +  q + q ’ )  sin’ f (  k - q + 4’) 

sin2 + ( k  - q - q ’ ) ( N +  1 )  
sin’ +( k - q - q ‘ )  

+ 
This expression can be written in a much shortened form by noting that all four 

terms in the bracket of (20) can be accommodated by extending the range of summation 
over wavevectors to include both positive and  negative q and q’ so that for the rest of 
this section sums over q and q‘ will be given by q = n.rr/(N+ l ) ,  n = 5 1 ,  *2 , .  . . , * N  
for the ferromagnet and q = n7r/(N+2),  n = * l ,  *2, .  . . , ( N +  1 )  for the X Y  chain 
(rather than by (10) and ( 1 5 ) ,  which have been used up  to this point). After further 
trigonometric manipulations we are led to a much shortened expression for the response 
function 

x S ( w  - E 9 +  E , - ) [ n ( q )  - n(q‘l1. (21) 
We now simplify this in the appropriate limits of frequency and wavevector. We 

can assume, without loss of generality, that w > 0. Rk is reconstructed for negative w 
by noting that R k ( w )  = - R k ( - w ) .  

In cases (i) and  (ii) listed at the beginning of this section both w and k are small; 
the sum over q and q‘ is then dominated by those q and q’ which are small compared 
to 1 so that we can expand the denominator and the energies of (21) to lowest order. 
Since the correlation length 5 = -1np is large it is possible to replace the summation 
over chain lengths by a n  integral, freely substituting L for N, N +  1 and  N + 2 :  

1 l - c o s ( k + q + q ’ ) L  
RK = 7~ loE d L  7 S ( w  + J q 2  - J q 1 2 ) [ n ( q )  - n ( q ’ ) ] .  

9.9’ L ( k  + + q’)’ 
(22) 

We would like to use the integral arising from the average over chain lengths to 
eliminate the S function; to d o  this we interchange the order of summation and 
integration taking care to change the limits where necessary 

--oc 

(23) 
It is now seen that the error made in replacing the lower limit of the integral by 0 

rather than lml is of higher order in ( - I ,  and this allows the integral to be performed 
without difficulty. 

Let us now distinguish between the linearised system where Bose statistics must 
be used and  the X Y  chain where the elementary excitations are fermionic. For energies 
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obeying the condition pw S 1 the difference n ( n ) -  n ( m )  of occupation factors can be 
expanded to give 

1 (m2-n’)  L~ 
p J  n2m2 T’ 

for the Bose case - n b ( n ) - n  b ( m ) = -  

( m2 - n2).ir2pJ 
for the Fermi case. 

4 L2 
n f ( n )  - n‘(m) = 

We are now able to give the final answers for the dynamic response, in cases (i) 
and (ii), as infinite double summations: 

1 - ( - l )m+n cos k.rr[J(n2-m2)/w]’/’ 
{ k [ J ( n 2 - m 2 ) / w ] 1 / 2 +  n+m}2  

X 

for the ferromagnet as w + 0 (case (i)); 

1 -(-I)“‘+‘ cos k.rr[J(n2-m2)/w]’/2 
{ k [ J ( n 2 - m 2 ) / w ] ’ / 2 +  n+m}2  

X 

for the X Y  chain as w + 0 (case (ii)). 
We now turn to the other two cases (iii) and (iv) and obtain expressions for the 

linearised spin-wave system and (zero-field) X Y  chain in the limit w + 45, k + T,  5-’+ 0. 
For the X Y  system this limit gives rise to a Van Hove singularity, persisting even at 
zero temperature because of zero point fluctuations, which is rounded out by the 
disorder in the chain. The result follows from ( 2 1 )  in entirely the same fashion as 
given above if q is expanded about 0 and q’ about T. The results are 

1 -cos( .rr - k ) n [ J (  n 2 +  m2)l (4J  - w ) l l / ’  
{ ( T  - k ) [ J ( n 2 +  m 2 ) / ( 4 J -  u ) ] ’ / ~ +  n + m}2 

X 

for the ferromagnet as w + 45 (case ( i i i ) ;  

+~ f i  1 m2+n2 Rk= 1 -- ( ~ ) exp{-T[ J (  m2  + n2) /  (4J - O J ) ~ ~ ] ” ~ )  
m , n t o  4 t 2  4 -  w 4 J -  w 

1 -cos( .rr - k).rr[J( n 2 +  m2) / (4J  - w ) ] ’ / ’  

{ ( T -  k ) [ J ( n 2 +  m 2 ) / ( 4 J -  w)]”’+ n + m}’ 
X 

for the X Y  chain as w + 45 and h = 0 (case (iv)). 
As stated above all these results can be written in the dynamic scaling form ( 2 )  

using the appropriate scaling variables which for k and w + O  (case (i) and (ii))  are 
a = k[ and b = wk-‘/J. For w +4J and k +  T (case (iii) and (iv)) the corresponding 
variables are c = ( .rr - k ) (  and d = [ (4  - U ) /  J ] / (  T - k)-’. In all four cases the exponent 
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z takes the value z = 2 but the exponents 7 and the dynamic scaling functions F in 
(2) differ from case to case and are trivially obtained from the results (26)-(29): 

(i)  for the ferromagnet as w + 0, 7 takes the value 7 = 1, and 

1 - ( - l )m+n  cos k.rr[(n2-m2)/b]1/2 
{ [ ( n 2 -  m’)/bl1/*+ n + m}’ 

X 

(ii) for the X Y  chain at h = J as w + 0, 7 is 7 = 3, and 

exp{-.rr[(n’- m2)/ba2]1/2} 
a2b1/2 

P “  
16 lml>/n/#O 

F ( a , b ) = -  1 ( m 2 - n )  

-n 

1 -(-l)”’+n COS kn[(n2-m2)/b]’/’ 
{ [ ( n 2 -  m 2 ) / b ] 1 / 2 +  n + m}’ X 

(i i i)  for the ferromagnet as w + 4J, 7 = 1 and 

1 (m’+  n2l3/’  
F(c ,d)=-  f exp{ -r[ ( m2 + n’)/ dc2]’’’} 

4 p J 2  m , n # O  
-cc 

1-cos .rr[(n’+m2)/d]’/’ 
{[( n’+ m2)/d]’/’ + n + m}’ 

X 

(iv) for the X Y  chain as w + 45, and h = 0, 7 becomes 7 = 3, and 
n 

F ( c ,  d ) =  1 ( m 2 + n 2 ) 1 / 2  e ~ p { - n [ ( m ~ + n ‘ ) / c ~ d ] ~ / ’ }  
m,n#O 
-cc 

1 -cos r [ ( n 2 +  m’)/d]’/’ 
{ [ ( n 2 +  n ~ * ) / d ] ~ / ~ +  n + m}’* X 

Plots of these functions, and their interpretations, will be given in § 5 .  

(33) 

4. The longitudinal density of states 

In this section we show that the longitudinal density of states can be calculated using 
the same method as was used to calculate the full response function. The calculation 
is performed in the same limits as above. The density of states of a system is defined 
by the expression 

= c Im 6. (34) 
r 

G,, is easily found by putting m = 0 in (18). The trigonometric summation required 
is then just 
n 

{b[cos( q + q’)(2r + x)  + cos( q - q’)(2r + x)]  
%4’ 

+$[l+(-l)” cos q ’ ( 2 r s x )  + (-1y 

As before we find only one term is important in 
cos(2r+ x)]}. (35) 
the limits of interest leaving us with 
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a much simplified expression: 

Applying the same trick of reversing the order of summation and integration and 
again expanding occupation factors in the small frequency limit as was used above 
we obtain the following formulae for the density of states. 

(i) Ferromagnet as w + 0: 

T ( m 2 - n 2 ) 2  exp{-.rr[J(m2-n2)/w52]’/2 
w 2 5  

P ( W )  =2p zn n 2 m 2  

1 

(ii) X Y  chain at h = J as w + 0: 

(iii) Ferromagnet as w + 4J:  

(37 )  

(iv) For the X Y  chain at h = 0 as w + 4 J :  

Each of these results can be written in a dynamic scaling form 

where the scaling variable x for the density of states is x = w(’ /J  as w + 0 and 
x = [ ( 4 - w ) / J ] [ ’  as w - 4 5 .  The exponents z and 77 take the same values as before, 
but each g ( x )  is now a new universal function trivially obtainable from (371440) .  

5. Discussion of results 

The results for both the average response and the density of states have been expressed 
in the form of sums over integers. These summations can be performed numerically 
and we give plots of the resulting scaling functions for the response in figures 1-5. In 
each case the graph is given for various values of the scaling variable & or ( T - k)5 ,  
so that it is possible to see the crossover from a regime where chain lengths are long 
compared with typical wavelengths involved (& >> 1 )  or (T - k ) &  >> 1) to a regime where 
the scattering is from segments short in comparison with the typical wavelengths (& << I 
or (T- k ) [ c  1). In the first regime the response approaches that of a pure chain, 
which is strongly peaked about w /  Jk2 or [ ( 4  - @)/.TI/( T - k)’ of order unity, except 
in case (ii); the sharp peaks arise from undamped boson or fermion pair contributions. 
In addition, in this regime of high or (T - k ) 5  the response in cases (i), (iii) and 
(iv) shows an oscillatory structure at small w /  Jk’ or [(4- w ) / J ] / (  T - k ) 2  which is like 
that seen previously for the transverse response of diluted Heisenberg ferro- [8] and 
antiferromagnetic [ 111 chains where it arises because of the vanishing of the response 
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I 

0.6 1.2 1.: 2.4 3.0 
d J k  

Figure 1. Scaling plot of longitudinal response func- 
tion R ( k ,  U )  for case (i) of the text, the diluted chain 
Heisenberg ferromagnet in the regime w + 0, k + 0, 
(-' + 0, where 5 is the percolation correlation length. 
The plot is against w / J k 2  for values of Q ranging 
from 1-3. 

0.6 1.2 1.8 2.4 3.0 
d J k Z  

Figure 2. Scaling plot of longitudinal response func- 
tion R (  k, w )  for case ( i )  of the text, the diluted chain 
Heisenberg ferromagnet in the regime w + 0, k -* 0, 
t-'+ 0, where ( is the percolation correlation length. 
The plot is against w / J k 2  for the values of Q ranging 
from 6-16. 

at values of the frequency for which there is zero coupling of internal wavefunction 
and kth Fourier component of external perturbation. As k t  or ( T  - k ) (  decreases, the 
sharp structure of the response is broadened by finite lifetime effects due to scattering 
from the segment ends and eventually all the detail is lost with only a broad background 
remaining. The most important feature evident in this regime is the vanishing of the 
response at low frequencies. This actually occurs for all finite k$ (or ( T -  k ) ( )  at 
sufficiently low frequency: as w + 0 the response vanishes exponentially fast since the 
long chain segments required to support the low energy eigenstates become rare in 
the dilute system (see the exponential factors in (26)-(29)). Another example of the 
effect of the disorder being very strong at particular frequencies, even for very small 
concentrations of missing bonds, occurs at the strong peak in the nearly pure limit of 
case (i). For the pure system there is a non-integrable divergence of the response at 
the energy of the single-particle spin-wave peak (i.e. at w = Jk2) .  This divergence is 
removed by any dilution which removes the lowest-lying eigenstates of the system. At 
any finite temperature these states become very highly populated because of the pole 
in the Bose occupation factors. This large population of low-lying eigenstates is what 
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i kE=16/  

/ 
I /' ' Y  

/ 

0' 1 
0 

3.6 1.2 1.8 2.4 
wlJk ' 

Figure 3. Scaling plot of longitudinal response func- 
tion R ( k ,  U )  for diluted quantum XY chain in the 
regime w + 0, k + 0, [-' + 0 (case (ii) of the text). 
The field takes the special value h = J. 

tP 2 

0tJ 

1 

0.6 1.2 1.8 2.4 
0 - - - - r . " . , . . . '  

( 4 - w l i i  / (n-k )' 
'0 

Figure 4. Scaling plot of longitudinal response func- 
tion for diluted chain Heisenberg ferromagnet in the 
regime w + 4/, k + r, [-' + 0 (case (iii) of the text). 

leads to strong scattering near this special energy. Similar effects occur near the pure 
limit of case (ii). The dilution also removes less singular divergences such as the square 
root Van Hove singularity in the Heisenberg and X Y  systems as w+4J. 

The scaling functions g (defined in (41)) for the density of states are shown in 
figure 6 for all four cases, in terms of the appropriate scaling variable w t ' / J  or 
[(4 - U ) /  J]t'. For small values of this variable (i.e. for w or 45 - w less than a crossover 
frequency w* = J /  t 2 )  the same exponential decrease seen in the response occurs, and 
for the same reason. The exponential factors in (37)-(40) make this explicit. Above 
the crossover frequency the densities of states tend to the corresponding pure results. 
The crossover frequency w* corresponds to the lowest energy occurring in a segment 
of typical size (the percolation correlation length, 5). It is interesting to note the sharp 
'edges' which occur at the crossover frequency in the densities of states for the 
ferromagnet. 

The dynamic exponent z is z = 2  for all the cases considered. The exponent 7 
takes a variety of values. That 7 = 1 for the Heisenberg ferromagnet in case (i)  
(k = 0, w = 0) is the usual static critical exponent of the critical (longitudinal) correlation 
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Figure 5. Scaling plot of longitudinal response function for diluted quantum X Y  chain at 
zero field in the regime w +4J, k +  T, 5-l-O (case (iv) of the text). 

of the pure system. Those for cases (iii) and  (iv) relate to non-critical staggered 
correlations. The static longitudinal correlation functions of the pure quantum X Y  
chain have however been treated generally [19] and  from this work it is possible to 
extract the values of 7 for both case ( i i )  (long wavelength limit for the X Y  model at 
its quantum transition at h = J )  and for case (iv) ( k  - T, i.e. staggered, limit for quantum 
X Y  model at h = 0.) In both cases 7 = 3, in agreement with our values for the dilute 
generalisation. 

Because case (ii) corresponds to the critical point of a quantum model, and such 
models have higher-dimensional classical equivalents [20], our exact treatment of 
dilution in this case is equivalent to a treatment of striped randomness in a higher- 
dimensional classical model (cf for the Ising case, references [21, 221). 

No experimental investigations have yet been made with which to compare the 
results of this paper. The only experiments on critical dynamics of dilute chains so 
far carried out are on the antiferromagnet TMMC [12, 131. Though we expect similar 
effects there in the longitudinal response and  density of states to those predicted above 
(suppression of response coming from long wavelength excitations, crossover and 
scaling, etc) those effects appear to have been masked by incoherent scattering, and  
only the dominant features of the transverse response have been seen, which compare 
well with the theory developed for that case [ l l] .  
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Figure 6. Scaling plot of longitudinal density of states for each of the following one- 
dimensional systems at weak dilution (t-'+ 0): ( i )  ferromagnet as w + 0; (ii) quantum XY 
chain at h = J as w + 0; ( i i i )  ferromagnet as w + 4J; (iv) quantum XY chain at zero field 
as w+4J. 
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